-2x^2/x^4+2x^2+1

Simple and best practice solution for -2x^2/x^4+2x^2+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2x^2/x^4+2x^2+1 equation:


D( x )

x^4 = 0

x^4 = 0

x^4 = 0

1*x^4 = 0 // : 1

x^4 = 0

x = 0

x in (-oo:0) U (0:+oo)

2*x^2+(-2*x^2)/(x^4)+1 = 0

2*x^2-2*x^-2+1 = 0

t_1 = x^2

2*t_1^1-2*t_1^-1+1 = 0

2*t_1^1-2*t_1^-1+1*t_1^0 = 0

(2*t_1^2+1*t_1^1-2*t_1^0)/(t_1^1) = 0 // * t_1^2

t_1^1*(2*t_1^2+1*t_1^1-2*t_1^0) = 0

t_1^1

2*t_1^2+t_1-2 = 0

2*t_1^2+t_1-2 = 0

DELTA = 1^2-(-2*2*4)

DELTA = 17

DELTA > 0

t_1 = (17^(1/2)-1)/(2*2) or t_1 = (-17^(1/2)-1)/(2*2)

t_1 = (17^(1/2)-1)/4 or t_1 = (-(17^(1/2)+1))/4

t_1 in { (-(17^(1/2)+1))/4, (17^(1/2)-1)/4}

t_1 = (-(17^(1/2)+1))/4

x^2-((-(17^(1/2)+1))/4) = 0

x^2+(1/4)*(17^(1/2)+1) = 0

1*x^2 = -(1/4*(17^(1/2)+1)) // : 1

x^2 = -1/4*(17^(1/2)+1)

t_1 = (17^(1/2)-1)/4

x^2-((17^(1/2)-1)/4) = 0

1*x^2 = (17^(1/2)-1)/4 // : 1

x^2 = (17^(1/2)-1)/4

x^2 = (17^(1/2)-1)/4 // ^ 1/2

abs(x) = ((17^(1/2)-1)^(1/2))/2

x = ((17^(1/2)-1)^(1/2))/2 or x = -(((17^(1/2)-1)^(1/2))/2)

x in { ((17^(1/2)-1)^(1/2))/2, -(((17^(1/2)-1)^(1/2))/2) }

See similar equations:

| F(x)=-4x^2+9x+5 | | -45.6e=-4.56 | | 1/2x+2x=20 | | x/2.5=-3 | | 8x^2-18xy+9y^2= | | X^2-26x+15= | | x^2+y^4+3xy=81 | | 4x+9-7x=14-19x+16x-5 | | 8x=18x | | -(-27x-29)+(11x-5)+11x-28x=-10-21 | | 3x^2+10xy-8y^2= | | 15(t-2)+3t=6(3t+4)-13 | | 2lnx-lnx=3 | | 7=4.4b-19.3 | | 10y^2-11y-6= | | 4y-7= | | .5c+9=-4.5 | | 7y+2=17-3y | | 19y=-7+7-26y-19y | | a+(a+2)+(a+4)=-42 | | 19y=7+7-26y-19y | | 2z^2-9z+10= | | 9+3x=3x+5(6-3x) | | a+(a+2)+(a+4)=42 | | 16y^2+16y+3= | | 2+a/(-6)=7 | | y=3-5x | | k*1/4k-2 | | -x^2+6x-5= | | -7/4+1/4 | | 12y+6=9y-15 | | x^2-23x-120=0 |

Equations solver categories